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We investigate the consequences of delay in the iodate–arsenous acid reaction under the influence of an
electric field at a constant current density. Using the charge balance condition, we show how the electric field
may induce an intrinsic delay in the system, which gives rise to instability. The different instability regions in
the appropriate parameter space are examined. We show how the delay incites an absolute instability in a
system otherwise displaying varied wave-front characteristics, viz., convective and absolute instabilities and
also stationary patterns.
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I. INTRODUCTION

The employment of ordinary partial differential equations
�OPDEs� in chemical kinetics makes the obvious approxima-
tion that a reaction depends only on the current value of the
variables present. At times it may happen that a phenomenon
is affected by some feature of the system at an earlier time. A
molecular event generally takes a small but finite amount of
time to affect a molecule at some distance from it. If this
process is prolonged for some reason, the delay in the system
can no longer be ignored. Then delay differential equations
�DDEs� become important. Such delay often materializes
from feedback which is quite extensive and diverse in chem-
istry and biology �1,2�.

DDEs have been widely employed to describe the time
lag occurring between the steps of a chemical reaction as in
the phosphorylation-dephosphorylation mechanism �3� and
the stabilization of unstable states in illuminated thermo-
chemical reactions �4�, and in physical processes such as
mass transfer across membranes �5�. Apart from these appli-
cations, DDEs have also been used to simplify the mecha-
nisms of complicated reactions �6,7�.

Keeping in mind these developments, one may envisage
the presence of an external delayed feedback to gain control
over reactions. Here, we attempt to study the introduction of
delay in the effect of an external electric field on reaction-
diffusion systems. We undertake the study by considering a
general prototypical model of the iodate-iodide reductant
system. This system has been widely studied for testing a
variety of nonlinear dynamical features like wave-front
propagation and noise-induced instabilities �8–13�. Experi-
mental evidence of the alteration of wave-front properties of
this reaction under the influence of an electric field has also
been found �14,15�.

In one of our previous studies �12�, we have considered in
detail the spatial inhomogeneities of the electric field inten-
sity and charge density in the arsenous acid–iodate reaction.
The application of the local charge balance condition, under
the influence of constant current density due to ionic migra-
tion and diffusion, was shown to result in convection terms
which give rise to both absolute and convective instabilities,

resulting in the development of propagating waves and also
stationary spatial patterns at times. It was shown that the
condition of constancy of current density when maintained
under a charge balance condition produces more ions �16� as
a result of chemical reaction, due to stoichiometric require-
ments, in the presence of an externally applied field, thus
generating a stronger field around the reacting zone. This
process is expected to take a finite amount of time, thus
resulting in an apparent change in the intensity of the local
electric field, depending on the concentration of ions at some
former time. Such an intrinsic lag can be expressed using the
delay differential equation model. The signature of this delay
in stability and wave propagation would be an interesting
attribute to investigate.

In what follows, we analyze the influence of delay on the
nature of spatiotemporal instability in this system and try to
highlight the resulting deviations from the situation without
delay. We corroborate our theoretical analysis by numerical
simulations in two dimensions.

II. INTRODUCTION OF DELAY; THE MODEL

The arsenous acid–iodate reaction, one of the most com-
mon of the iodate-iodide reductant systems, is a composite of
the Dushman reaction �2.1� and the Roebuck reaction �2.2�:

IO3
− + 5I− + 6H+ � 3I2 + 3H2O, �2.1�

H3AsO3 + I2 + H2O → H3AsO4 + 2I− + 2H+. �2.2�

In the overall process, the Dushman reaction is the rate-
determining step �8,17�. We have here followed the kinetic
studies of this reaction as given by Schmitz �18�, where ex-
perimental observation of the simultaneous first- and second-
order dependence of the rate on �I−� over a range of low to
moderately low concentration of I− has been made. The el-
ementary steps involved in the mechanism of the Dushman
reaction as suggested by Schmitz are as follows:

IO3
− + H+�

k−1

k1

HIO3, �2.3�

HIO3 + I− + H+�
k−2

k2

I2O2 + H2O, �2.4�
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I2O2 + H2O→
k3

HIO2 + HOI, �2.5�

I2O2 + I−→
k4

IO2
− + I2. �2.6�

Applying steady-state approximations to HIO3 and I2O2 and
considering �H+� constant �due to the large concentration of
H+ ions�, and since �H2O� �=kw� is a constant, we arrive at
the following rate equation:

d�I−�
dt

= − �I−��IO3
−��H+�2�k� + k��I−�� . �2.7�

Here, k� and k� are constants, in keeping with the experimen-
tal rate law, and are given by

k� =
k1k2

k−1
, �2.8�

k� =
k1k2k4

�k−2 + k3�k−1kw
. �2.9�

The experimental rate law for the system is given by

v = �k� + k��I−���I−��IO3
−��H+�2, �2.10�

where k�=4.5�103M−3 s−1 and k�=1.0�108M−4 s−1 are the
rate constants.

The sharp change in concentration of iodine-containing
species with time makes the spatial local gradient of these
species appreciably sharp, and the difference in their mobili-
ties results in local inhomogeneity of the electric field inten-
sity and electric charge density in the reaction medium. Fur-
thermore, the rapidity of the reaction step, as emphasized by
Münster et al. �19�, invalidates the assumption of a homoge-
neous electric field. It would be relevant to consider the
variation in electric potential gradient, ��, by taking into
consideration the charge balance condition.

The rate equations for the three ionic species �I−�, �IO3
−�,

and �H+� are as follows:

d�I−�
dt

= − �k� + k��I−���I−��IO3
−��H+�2 − � · J�I−�, �2.11�

d�IO3
−�

dt
= − � · J�IO3

−�, �2.12�

d�H+�
dt

= − � · J�H+�, �2.13�

where Ji denotes the flux of the ith ionic species for the
system.

For a reaction-diffusion system, in the presence of an in-
homogeneous charge density, the flux for an ionic species is
given by the Nernst-Planck equation �20�, viz.,

Ji = − Di � Ci −
DiziF

RT
Ci � � , �2.14�

where Di denotes the diffusion coefficient, zi is the charge on
the ion i, in atomic units �with sign�, and Ci is the molar

concentration �mol dm−3� of the ith ion. T is the absolute
temperature, and R and F denote, respectively, the universal
gas constant and the Faraday constant in SI units. Here, �
stands for the electric potential and

−
F

RT
� � = E ,

E being the electric field or the electric potential gradient in
dimensions of L−1. Thus, Eq. �2.14� takes the following
form:

Ji = − Di � Ci + DiziCiE . �2.15�

Now we substitute u�x ,y , t�, v�x ,y , t�, and w�x ,y , t� for
�I−�, �IO3

−�, and �H+�, respectively. Considering DI− =DIO3
−

=DH+ /d=1, with d=2, we obtain the following partial dif-
ferential equations �OPDEs�;

�u�x,y,t�
�t

= − �k� + k�u�uvw2 + � · �� · u + uE� ,

�2.16�

�v�x,y,t�
�t

= � · �� · v + vE� , �2.17�

�w�x,y,t�
�t

= d � · �� · w − wE� . �2.18�

Consideration of the electrical inhomogeneities of the re-
action medium under the charge balance condition gives

� · �
i

ziJi = 0 . �2.19�

This implies

�
i

ziJi = const = j . �2.20�

We now put the expression for Ji from �2.14� into �2.21�,
which when rewritten in terms of the concentration of the
ionic species u, v, and w gives us the expression for the
electric field.

E =
j − �u − �v + d � w

u + v + dw
. �2.21�

Ordinary chemical kinetics has an underlying approxima-
tion that a reaction depends only on the current value of
the variables present. A molecular event �at x� generally
takes a small but finite amount of time �of the order of
�x−x��2 /2D� to affect a molecule at some distance �at point
x�� from it �21�. This lag in the time scale can be equated to
a delay time �, given by

� �
�x − x��2

2D
=

��x�2

2D
. �2.22�

In the present case, the ionic species under the influence of
the competitive effects of the electric field and the reaction-
diffusion kinetics might be considered to take a finite amount
of time � to rearrange themselves. Thus the potential field or
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the local inhomogeneous electric field at any time t will de-
pend upon the distribution of the ions at some previous time,
t−�. Under such circumstances, one may write

j = �
i

�− Dizi � Ci�t − �� + Dizi
2Ci�t − ��E�t�� . �2.23�

Therefore the electric field in the presence of delay is given
by

E�t� =
j − �ut−� − �vt−� + d � wt−�

ut−� + vt−� + dwt−�

. �2.24�

Equations �2.13�–�2.18� and �2.24� can be said to constitute
the delay differential equations of the rate expressions for the
system in this case.

III. LINEAR STABILITY ANALYSIS: COMPARISON
BETWEEN THE OPDE AND DDE MODELS

The stability analysis for the OPDE model has already
been discussed in detail in our previous paper �12�. More-

over, if the delay time is set to zero ��=0� the DDE model is
equivalent to the OPDE model. So in subsequent sections we
will illustrate in detail the analysis of the DDE model only.

We assume the existence of a spatially uniform steady
state �u=u0 ,v=v0 ,w=w0� of the dynamical system, such
that

f�u0,v0,w0� = 0, �3.1�

where f�u ,v ,w� denotes the reaction part of Eq. �2.13�. We
furthermore assume that this state is stable in the absence of
diffusion, i.e.,

� � f

�u
�

u=u0,v=v0,w=w0

= f� � 0. �3.2�

Considering an expansion of u, v, and w in Eq. �2.13� about
the steady value �u0 ,v0 ,w0�, we have

��u0 + �u�
�t

= f�u0 + �u,v0 + �v,w0 + �w� + �x,y
2 �u0 + �u� + �x�u0 + �u�� j − ��u0 + �ut−�� − ��v0 + �vt−�� + d � �w0 + �wt−��

�u0 + v0 + dw0� + ��ut−� + �vt−� + d�wt−��
� .

�3.3�

Expanding f in a Taylor series about the steady value and employing a binomial expansion for the term due to E, while
considering only the linear terms in �u, �v, and �w, we have

���u�
�t

= − v0w0
2k1�u − u0w0

2k1�v − 2u0v0w0k1�w − 2u0v0w0
2k2�u − u0

2w0
2k2�v − 2u0

2v0w0k2�w

+ �x,y
2 �u −

u0j

a0
2 �x��ut−� + �vt−� + d�wt−�� −

u0

a0
�x

2��ut−� + �vt−� − d�wt−�� +
j

a0
�x�ut−�. �3.4�

Here the constant sum �u0+v0+dw0� has been replaced by
another constant a0, for the purpose of simplicity. Proceeding
similarly, Eqs. �2.17� and �2.18� take the forms

���v�
�t

= �x,y
2 �v −

v0j

a0
2 �x��ut−� + �vt−� + d�wt−�� −

v0

a0
�x

2��ut−�

+ �vt−� − d�wt−�� +
j

a0
�x�vt−�, �3.5�

���w�
�t

= d�x,y
2 �w +

dw0j

a0
2 �x��ut−� + �vt−� + d�wt−��

+
dw0

a0
�x

2��ut−� + �vt−� − d�wt−�� −
dj

a0
�x�wt−�.

�3.6�

We now express the spatiotemporal perturbations as

�u�x,y,t� = Aei�kx.x+ky.y−�t�, �3.7�

�v�x,y,t� = Bei�kx.x+ky.y−�t�, �3.8�

�w�x,y,t� = Cei�kx.x+ky.y−�t�, �3.9�

where A, B, and C are constants. Substituting the above into
Eqs. �3.4�–�3.6�, we have

− i�A = − �v0w0
2k1 + 2u0v0w0

2k2�A − �u0w0
2k1 + u0

2w0
2k2�B

− 2�u0v0w0k1 + u0
2v0w0k2�C − �kx

2 + ky
2�A −

iu0jkx

a0
2 �A

+ B + dC�ei�� +
u0kx

2

a0
�A + B − dC�ei�� +

ijkx

a0
Aei��,

�3.10�

− i�B = − �kx
2 + ky

2�B −
iv0jkx

a0
2 �A + B + dC�ei��

+
v0kx

2

a0
�A + B − dC�ei�� +

ijkx

a0
Bei��, �3.11�
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− i�C = − d�kx
2 + ky

2�C +
idw0jkx

a0
2 �A + B + dC�ei��

−
dw0kx

2

a0
�A + B − dC�ei�� −

idjkx

a0
Cei��. �3.12�

The system of Eqs. �3.10�–�3.12� can be put in the form of a
matrix equation as

L	A

B

C

 = 0, �3.13�

where

L = 	l11 + i� l12 l13

l21 l22 + i� l23

l31 l32 l33 + i�

 .

The detailed expressions for the elements of the above ma-
trix are given in the Appendix.

To examine the stability, we now write the following de-
terminantal equation for the eigenvalue problem:

�L� = 0. �3.14�

On expanding Eq. �3.14�, we get the following dispersion
relation, a cubic in �:

�Ga + Fa��3 + �Gb + iFb��2 + �Gc + iFc�� + Gd + �Ge

+ iFe�ei�� + �Gf + iFf�e2i�� + �Gg + iFg�e3i�� + �Gh

+ iFh��ei�� + �Gi + iFi��e2i�� + �Gj + iFj��2ei�� = 0,

�3.15�

where, Ga, Gb, Gc, etc. are the real parts and Fa, Fb, Fc, etc.
are the imaginary parts of the coefficients of different powers
of �. Also Ga=0 and Fa=1.0. �For brevity, we have not
mentioned the detailed expressions of the above coeffi-
cients.�

In order to obtain the variation of � versus kx, we find the
quantity �� /�kx by differentiating Eq. �3.15� with respect to
kx. We then find its maxima at k0 such that ��� /�kx�kx=k0
=0. We thus obtain the form

�Gk0

b + iFk0

b ��2 + �Gk0

c + iFk0

c �� + Gk0

d + �Gk0

e + iFk0

e �ei�� + �Gk0

f

+ iFk0

f �e2i�� + �Gk0

g + iFk0

g �e3i�� + �Gk0

h + iFk0

h ��ei��

+ �Gk0

i + iFk0

i ��e2i�� + �Gk0

j + iFk0

j ��2ei�� = 0, �3.16�

where Gk0

a = ��Ga /�kx�kx=k0
, Gk0

b = ��Gb /�kx�kx=k0
, and so on.

They are all implicit functions of kx at k0.
Only those solutions of �3.16� that satisfy the dispersion

relation Eq. �3.15� are the required eigenvalues.
We now look for the parameter spaces of the constant

electric flux j versus the wave number k0 for which the
eigenvalues exist for a fixed value of ky. The experi-
mentally admissible parameters �21� are given by
k�=4.5�103M−3 s−1, k�=1.0�108M−4 s−1, and DH+ =2
�10−1 mm2 s−1 �giving d=2�. The steady state condition
used is �u0=2.5�10−5M, v0=0.0M, w0=7.1�10−3M�.

The nature of the eigenvalues in these spaces foretells the
onset of instability in the presence of both negative and posi-
tive electric flux. Following Scott and co-workers �22�, we
now distinguish between three typical situations; absolute
instability, convective instability, and stationary pattern for-
mation. Based on the nature of the real and imaginary parts
of ��k0� we have

�i� Re���k0���0, Im���k0���0 �absolute instability�;
�ii� Re���k0���0, Im���k0��=0 �convective instability�;
�iii� Re���k0��=0, Im���k0��=0 �stationary pattern

formation�.

Our object is to look for the set of valid maxima of the
wave numbers k0 for which the system may exhibit absolute
or convective instability, or stationary pattern formation, for
various values of the constant current density j �hereafter
referred to as the j-k0 space�. As mentioned earlier, this cur-
rent density j can be controlled �23� from outside depending
on the nature of the experiment. We discuss these cases sepa-
rately in terms of the j versus k0 plot in the following three
paragraphs.

(1) Absolute instability. When a small perturbation lifts
the system to a state different from the initial, and the per-
turbation moves forward, transforming the system to a final
state away from the steady state, this is said to be an absolute
instability. Figures 1�a� and 1�d� identify the j-k0 space
where a small perturbation would lead to absolute instability
in the system. We will return to the specific nature of the
wave-front propagation under the influence of absolute insta-
bility as depicted in Fig. 2�a� in Sec. IV.

(2) Convective instability. A spatially extended system is
said to be convectively unstable if a perturbation takes it
away from the steady state, and propagates as a wave packet
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FIG. 1. The set of valid maxima of wave numbers �k0� for each
of the applied constant current density values �j�, corresponding to
the eigenvalues that satisfy the condition for �a� absolute instability
�Re���k0���0, Im���k0���0 for �=0; �b� convective instability
�Re���k0���0, Im���k0��=0 for �=0; �c� stationary pattern forma-
tion �Re���k0��=0, Im���k0��=0 for �=0; and �d� absolute insta-
bility for �=1 to 30 �in units of �t�. �Other parameters are as men-
tioned in the text.�
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growing in size. But unlike in the case of absolute instability,
in this case, when the wave packet passes by, the system
comes back to the original steady state. Figure 1�b� shows
the j-k0 space where a small perturbation would lead the
system into a state of convective instability. In what follows
we will again discuss the propagation of the wave front with
time, when the system is convectively unstable, in Sec. IV, as
portrayed in Fig. 2�b�.

(3) Stationary pattern. When the perturbation is constant
with time, with a purely imaginary exponent, it can give rise
to a stationary pattern, i.e., the exponential part should be of
the form ei�kxx+kyy�, such that �=0 and kx and ky are real.
Figure 1�c� shows the j-k0 space for which a perturbation
may bring about a transition to a pattern stationary in time.

It has been seen that for the case where �=0 �the case
without delay�, the system may move on to absolute or con-
vective instability and even to a stationary pattern at times
depending upon the nature of the parameter space; while in
the presence of delay �nonzero ��, there exists a state of
absolute instability for all values of j. Those parameter
spaces that had seen the advent of convective instability and
stationary pattern formation in the absence of delay now lead
to the state of absolute instability.

IV. NUMERICAL SIMULATION AND DISCUSSION

In order to make a quantitative comparison between the
OPDE and DDE models, we now carry out numerical simu-
lations of the reaction-diffusion system �Eqs. �2.13�–�2.18��
with the different expressions for the electric field �Eqs.
�2.21� and �2.24�, respectively�, using the explicit Euler
method for the integration of the equations, following dis-
cretization of space and time. A finite system size of 100
�100 grid points has been chosen. Zero-flux boundary con-
ditions have been considered along all the four walls. As for
the potential, a zero-flux boundary is applied at the two sides
parallel to the direction of propagation of the wave front, and
a constant boundary is applied at the walls ahead of and
behind the front �23�, as given by

�� = −
j

�u0 + v0 + dw0�
. �4.1�

A time interval �t=1�10−5 s and a cell size �x=0.1 mm
have been found to be appropriate for the purpose. The delay

in the system can therefore be considered to be of the order
of 5�t �from Eq. �2.22��.

We have carried out our numerical simulations for both
the OPDE and DDE models considering different values of j
and �. The initial conditions are taken identical to the initial
experimental values of the reactants, with u0=1.0�10−6M
and v0=0.006M, over the unreacted reaction surface ahead
of the front. A small area behind the front �near Y
=100 mm� is considered as that where the reaction has al-
ready taken place; the initial value of the iodide ion here is
considered to be u0=0.006M, and that of the iodate v0=1.0
�10−6M. The hydrogen ion, or acid catalyst, that acts as a
buffer is taken to be initially uniform all over the reaction
vessel with a concentration of w0=0.0071M. The rate con-
stants k� and k� are the experimentally admissible values
mentioned earlier.

We calculate the iodine concentration at any time t as a
function of the concentrations of iodide and iodate ions, tak-
ing into consideration the conservation of total iodine in the
system:

�I2�t =
1

2
��I−�0 + �IO3

−�0 − �I−�t − �IO3
−�t� . �4.2�

Figure 2 is a two-dimensional plot of the wave front as a
graph of the iodine concentration versus the direction of
wave propagation, at three different times. It can be seen that
for the case of absolute instability �Fig. 2�a��, the wave in-
creases in amplitude as it transforms the system from its
initial state to an altogether different state. For the case of
convective instability, in contrast, the amplitude of the wave
increases as it moves forward, leaving the system in its origi-
nal state �Fig. 2�b��.

Figure 3 depicts the wave-front characteristics, as sur-
face plots of the iodide ion concentration, when delay is
not considered in the system, for varying values of the elec-
trical flux �j� at long times �t=300 s�. In the case of j
=0.05M mm s−1, convective instability is displayed, as the
wave front moves forward with a maximum amplitude,
and the concentration behind the wave-front decreases with
time �Fig. 3�a��. On the other hand, the reactant concentra-
tion behind the wave front may increase to a constant value,
portraying absolute instability, as seen in the case of
j=0.3M mm s−1 �Fig. 3�b��. In the absence of current density
j �=0.0M mm s−1�, one witnesses the formation of a station-
ary wave �Fig. 3�c��. Again in the case of a negative flux
j=−0.1M mm s−1, there occurs a probable culmination of
a set of backward-propagating waves with high velocity
�Fig. 3�d��.

In Figs. 4–7, we show surface plots of the iodide ion
concentration at various times when delay ��=5, in units of
�t� is considered in the system. As the wave packet moves
forward it forms a concentration gradient of the reactants, as
shown in the figures. As is seen for j=0.05M mm s−1, the
system depicts absolute instability in keeping with the stabil-
ity analysis �Fig. 4�. Unlike in the case of the OPDE model
�Fig. 3�a��, in this case the system reaches a state completely
different from the initial one, once the wave has passed by
�Fig. 4�d��. Again, when j=0.3M mm s−1, the system moves
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FIG. 2. Plot of the concentration of iodine versus the direction
of wave propagation at different times, depicting the influence of �a�
absolute instability and �b� convective instability. It can be seen that
the amplitude of the wave increases with time in both cases. In the
case of absolute instability the system is lifted to a state different
from the initial, while in convective instability the system comes
back to the initial state after the wave has passed by.
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on to absolute instability �Fig. 5�. Although the case is simi-
lar to that of the OPDE model as regards the nature of the
instability, a close comparison of the final state �Fig. 5�d��
with Fig. 3�b� shows a variation in the explicit nature of
the wave. Figure 6 shows the wave-front characteristics
for the case when j=0M mm s−1, where an exhibition of
absolute instability may be witnessed, though the wave
front is seen to be a backward-propagating one. The fea-
tures of the traveling wave in the case of the negative flux
�j=−0.1M mm s−1� for the DDE model �Fig. 7� are the same

as in the case of the OPDE model �Fig. 3�d��. The backward-
propagating wave leaves the rest of the system unreacted
�Fig. 7�d��. In keeping with our analysis, a further variation
of j to either higher or lower values does not lead to the
formation of stationary patterns nor does the system show
convective instability.

The difference between the two models is also illustrated
by a contour plot at four different times showing how the
velocity of the wave varies in the two cases �Fig. 8�. It can be
seen from this figure that the inherent delay of the system
gives rise to a lag in the wave-front propagation.

We also observe the time �tm� required by the maximum
of the propagating wave front to reach a particular point.
This may be considered to be a measure of the propagation
velocity. The initial conditions has been set as in the previous
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FIG. 3. Surface plots of the concentration values for the iodide
ion at long time �t=300 s� in the absence of delay ��=0� for vary-
ing current densities j. �a� j=0.05M mm s−1, convective instability;
�b� j=0.3M mm s−1, absolute instability with forward-propagating
wave; �c� j=0.0M mm s−1, stationary wave; �d� j=−0.1M mm s−1,
absolute instability with backward-propagating wave. �Other pa-
rameters are as mentioned in the text.�
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FIG. 4. Time-evolved surface plots of the concentration values
for the iodide ion at a constant current density of j
=0.05M mm s−1 showing wave propagation in the forward direc-
tion leading to absolute instability; �a� 10, �b� 100, �c� 200, and �d�
300 s, for �=5 �in units of �t�. �Other parameters are as mentioned
in the text.�
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FIG. 5. Time-evolved surface plots of the concentration values
for iodine at a constant current density of j=0.3M mm s−1 showing
forward-propagating fronts and absolute instability; �a� 10, �b� 100,
�c� 200, and �d� 300 s, for �=5 �in units of �t�. �Other parameters
are as mentioned in the text.�
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FIG. 6. Time-evolved surface plots of the concentration values
for iodine in the absence of current density, j=0.0M mm s−1. The
plots depict backward-propagating waves of low velocity leading to
absolute instability; �a� 10, �b� 100, �c� 200, and �d� 300 s, for �
=5 �in units of �t�. �Other parameters are as mentioned in the text.�
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case. It is seen from a plot of tm vs j �Fig. 9� that tm varies
hyperbolically with respect to j, with asymptotes at x=0 and
y=0 for �=0 and x=0.0163 and y=0 for �=5; the graphs for
positive and negative j forming a pair of conjugate rectangu-
lar hyperbolas, with only a valid positive y axis �time axis�.
This gives a graphical measure of the velocity of the wave
front, which changes with variation of flux j. For the case
without delay, the propagation velocity increases rapidly as j
becomes more and more negative. While the propagation
velocity is nearly zero for j=0.0M mm s−1, it again increases
as the flux moves to higher positive values. This tallies well
with the analytical prediction of stationarity at zero flux. On
the other hand, for the case with delay, the propagation ve-
locity never reaches zero for j=0.0M mm s−1 or very low
values of j. The hyperbola around j=0.0163M mm s−1 is in

agreement with the analytical result that for both positive and
negative values of flux the wave propagates, while for zero
and very low positive flux, we observe that the system
reaches absolute instability, although the velocity is small.

V. CONCLUSION

In this paper, we have studied how the delay model can be
incorporated into the charge balance condition of a reaction-
diffusion system under the influence of a constant external
flux and how that changes the nature of the instability. It has
been shown with appropriate stability analysis and corre-
sponding numerical simulations how the presence of delay
influences the propagation of the chemical wave front.

We now summarize the main conclusions of this study.
�i� We have developed an analytical approach for the in-

clusion of delay in the effects of electric field on a reaction-
diffusion system. The analytical estimates of the threshold of
instability in the iodate-iodide reductant system correspond
fairly well with the numerical simulation studies.

�ii� When the presence of delay is appropriately taken care
of, the system admits of absolute instability under all values
of the constant current density, which is in sharp contrast to
the case without delay, where, in addition to absolute insta-
bility, convective instabilities and stationary patterns were
displayed by the system, depending on the value of the con-
stant current density.

�iii� Our study indicates that the velocity of the propagat-
ing waves is controlled by the amount of flux in the system.
The delay-induced effects on the reaction-diffusion system in
the presence of an electric field also bring about an intrinsic
lag in the velocity of the system. Since the presence of delay
is almost ubiquitous in all systems under the influence of
diffusion, we believe that the role played by it in inducing
instability and pattern formation is generic and makes the
perspective of delay-induced transition much wider.

We hope this approach will be useful for exploring delay
in the selection of instability and pattern formation in spa-
tially extended systems under the influence of an external
field. The delay effects may also be externally controlled by
incorporating a mechanical delay from outside, which may
help us study many new interesting features of the system.
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FIG. 7. Time-evolved surface plots of the concentration values
for iodine at a constant current density j=−0.1M mm s−1 showing
backward-propagating waves; �a� 10, �b� 100, �c� 200, and �d� 300
s, for �=5 �in units of �t�. �Other parameters are as mentioned in
the text.�
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The great sensitivity of the arsenous acid–iodate reaction,
which establishes it as one of the best systems for the study
of wave-front propagation �17,21�, also ensures the monitor-
ing of this effect of delay, within workable ranges of experi-
mental constants.
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APPENDIX

The elements of the eigenvalue matrix L are as follows:

l11 = �− �v0w0
2k1 + 2u0v0w0

2k2� +
u0kx

2

a0
e�� − �kx

2 + ky
2��

+ i�−
u0jkx

a0
2 +

jkx

a0
�e��,

l12 = �− �u0w0
2k1 + u0

2w0
2k2� +

u0kx
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a0
e���

+ i�−
u0jkx

a0
2 �e��,
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2 �e��,

l21 = �v0kx
2

a0
�e�� + i�−
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a0
2 �e��,

l22 = �v0kx
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a0
e�� − �kx
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2�� + i�−

v0jkx

a0
2 +

jkx
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�e��,

l23 = �−
dv0kx
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l31 = �−
dw0kx
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a0
�e�� + i�dw0jkx
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l32 = �−
dw0kx
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a0
�e�� + i�dw0jkx

a0
2 �e��,

l33 = �−
d2w0kx
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a0
e�� − d�kx
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2 −
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